|
}} Mariner 2 (Mariner-Venus 1962), an American space probe to Venus, was the first robotic space probe to conduct a successful planetary encounter. The first successful spacecraft in the NASA Mariner program, it was a simplified version of the Block I spacecraft of the Ranger program and an exact copy of Mariner 1. The missions of Mariner 1 and 2 spacecraft are together sometimes known as the Mariner R missions. The probes had originally been intended to launch on the Atlas-Centaur, but that vehicle was not ready in time for the missions, forcing NASA to use the Atlas-Agena which had a much smaller payload capacity and necessitated greatly simplified probes with a minimum of instrumentation. The Mariner 2 spacecraft was launched from Cape Canaveral on August 27, 1962 and passed as close as to Venus on December 14, 1962.〔 The Mariner probe consisted of a 100 cm (39.4 in) diameter hexagonal bus, to which solar panels, instrument booms, and antennas were attached. The scientific instruments on board the Mariner spacecraft were two radiometers (one each for the microwave and infrared portions of the spectrum), a micrometeorite sensor, a solar plasma sensor, a charged particle sensor, and a magnetometer. These instruments were designed to measure the temperature distribution on the surface of Venus, as well as making basic measurements of Venus' atmosphere. The primary mission was to receive communications from the spacecraft in the vicinity of Venus and to perform radiometric temperature measurements of the planet. A second objective was to measure the interplanetary magnetic field and charged particle environment.〔 〕〔 〕 En route to Venus, Mariner 2 measured the solar wind, a constant stream of charged particles flowing outwards from the Sun, confirming the measurements by Luna 1 in 1959. It also measured interplanetary dust, which turned out to be scarcer than predicted. In addition, Mariner 2 detected high-energy charged particles coming from the Sun, including several brief solar flares, as well as cosmic rays from outside the Solar System. As it flew by Venus on December 14, 1962, Mariner 2 scanned the planet with its pair of radiometers, revealing that Venus has cool clouds and an extremely hot surface. == Spacecraft and subsystems == The Mariner 2 spacecraft was designed and built by the Jet Propulsion Laboratory of the California Institute of Technology.〔 〕 It consisted of a hexagonal base, 1.04 meters across and 0.36 meters thick, which contained six magnesium chassis housing the electronics for the science experiments, communications, data encoding, computing, timing, and attitude control, and the power control, battery, and battery charger, as well as the attitude control gas bottles and the rocket engine. On top of the base was a tall pyramid-shaped mast on which the science experiments were mounted, which brought the total height of the spacecraft to 3.66 meters. Attached to either side of the base were rectangular solar panel wings with a total span of 5.05 meters and width of 0.76 meters. Attached by an arm to one side of the base and extending below the spacecraft was a large directional dish antenna. The power system of Mariner 2 consisted of two solar cell wings, one 183 cm by 76 cm and the other 152 cm by 76 cm (with a 31 cm dacron extension (a solar sail) to balance the solar pressure on the panels), which powered the craft directly or recharged a 1000 watt-hour sealed silver-zinc cell battery. This battery was used before the panels were deployed, when the panels were not illuminated by the Sun, and when loads were heavy. A power-switching and booster regulator device controlled the power flow. Communications consisted of a 3-watt transmitter capable of continuous telemetry operation, the large high gain directional dish antenna, a cylindrical omnidirectional antenna at the top of the instrument mast, and two command antennas, one on the end of either solar panel, which received instructions for midcourse maneuvers and other functions. Propulsion for midcourse maneuvers was supplied by a monopropellant (anhydrous hydrazine) 225 N retro-rocket. The hydrazine was ignited using nitrogen tetroxide and aluminum oxide pellets, and thrust direction was controlled by four jet vanes situated below the thrust chamber. Attitude control with a 1 degree pointing error was maintained by a system of nitrogen gas jets. The Sun and Earth were used as references for attitude stabilization. Overall timing and control was performed by a digital Central Computer and Sequencer. Thermal control was achieved through the use of passive reflecting and absorbing surfaces, thermal shields, and movable louvers. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Mariner 2」の詳細全文を読む スポンサード リンク
|